If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2-2=14
We move all terms to the left:
3y^2-2-(14)=0
We add all the numbers together, and all the variables
3y^2-16=0
a = 3; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·3·(-16)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*3}=\frac{0-8\sqrt{3}}{6} =-\frac{8\sqrt{3}}{6} =-\frac{4\sqrt{3}}{3} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*3}=\frac{0+8\sqrt{3}}{6} =\frac{8\sqrt{3}}{6} =\frac{4\sqrt{3}}{3} $
| 11.20-x=-10 | | 3y^2-2=16 | | 2r+-r=-18 | | 2^(x+1)+2^(x-1)=20 | | 2(x-1/2)=1 | | 6x-7.5=-4 | | 2^(x+1)+2(x-1)=20 | | b/3-6=-5 | | 6q=300+3q^2 | | b-4/2=3 | | 48/15=k/37.5 | | 25x^2+100x-100=0 | | 2^x^2+2x=8 | | 13+7=33-x | | (3k+5)^2-27=0 | | v+9/4=4 | | 2.8/r=70/3 | | 2^2w+2=16 | | 2x-8=66 | | -87=6n+7(n-5) | | w/3+5=8 | | (X-5)=y | | 20=8.0w | | (M+2)=2x+4 | | 3t^2+2t+7=0 | | 10=b+3+2 | | (6x+15)+(6x+15)=15x+9 | | x-4)(x-18)-(x(x-14)=0 | | 5/2x+2=3.5 | | 40x^2+10x-15=0 | | 2^x=44 | | 30=4p-8 |